Calmodulin kinase II inhibition prevents arrhythmic activity induced by alpha and beta adrenergic agonists in rabbit pulmonary veins.
نویسندگان
چکیده
The autonomic nervous system and calcium regulation play important roles in the pathophysiology of atrial fibrillation. Calmodulin regulates the calcium homeostasis and may mediate the proarrhythmic effects of autonomic nervous agents. The purpose of this study was to compare the effects of beta- and alpha-adrenoceptor agonists on the pulmonary vein electrical activity and evaluate whether calmodulin kinase II inhibitors may change the effects of the adrenoceptor agonists on the pulmonary vein arrhythmogenesis. Conventional microelectrodes were used to record the action potentials in isolated rabbit pulmonary vein tissue specimens before and after the administration of isoproterenol, phenylephrine and KN-93 (a calmodulin kinase II inhibitor). In the tissue preparation, isoproterenol (0, 0.1, 3 microM) increased the beating rates (1.5+/-0.2, 1.6+/-0.2, 2.3+/-0.3 Hz, n=10, P<0.001) with the genesis of early afterdepolarizations (EADs, 0%, 40%, 50%, P<0.05) and increased the amplitude of the delayed afterdepolarizations (DADs, 0.6+/-0.3, 1.7+/-0.4, 3.9+/-1.0 mV, P<0.05). Phenylephrine (0, 1, 10 microM) also increased the beating rates (1.4+/-0.2, 1.6+/-0.2, 1.9+/-0.2 Hz, n=12, P<0.001), incidence of EADs (0%, 8%, 50%, P<0.05) and amplitude of the DADs (0.4+/-0.2, 1.2+/-0.4, 2.6+/-0.8 mV, P<0.05). KN-93 did not change the pulmonary vein beating rates or action potential duration. However, in the presence of KN-93 (1 microM), isoproterenol (3 microM) and phenylephrine (10 microM) did not induce any EADs or DADs in the pulmonary veins. In conclusion, calmodulin kinase II inhibition may prevent adrenergic induced pulmonary vein arrhythmogenesis.
منابع مشابه
SUPPRESSION OF VLDL-TRIACYLGLYCEROL SECRETION B Y BOTH α AND β-ADRENOCEPTOR AGONISTS IN ISOLATED RAT HEPATOCYTES
The effects of alpha and beta-adrenergic stimulation on triacylglycerol secretion were investigated in isolated rat hepatocytes. Epinephrine within 3h of incubation suppressed triacylglycerol secretion by 35% and increased its cellular content by 18%. The inhibitory effect of epinephrine was abolished by inclusion of phentolamine and also prazosin but not with propranolol. Trifluoperazine c...
متن کاملDevelopmental change in isoproterenol-mediated relaxation of pulmonary veins of fetal and newborn lambs.
beta-Adrenergic agonists are important regulators of perinatal pulmonary circulation. They cause vasodilation primarily via the adenyl cyclase-adenosine 3',5'-cyclic monophosphate (cAMP) pathway. We examined the responses of isolated fourth-generation pulmonary veins of term fetal (145 +/- 2 days gestation) and newborn (10 +/- 1 days) lambs to isoproterenol, a beta-adrenergic agonist. In vessel...
متن کاملP26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory
Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...
متن کاملModulation by angiotensin II of isoproterenol-induced cAMP production in preglomerular microvascular smooth muscle cells from normotensive and genetically hypertensive rats.
The objectives of the present study were to determine whether angiotensin II (Ang II) modifies beta-adrenoceptor-induced cAMP production in preglomerular microvascular smooth muscle cells (PMVSMCs), to determine whether the Ang II/beta-adrenoceptor interaction on cAMP production differs in PMVSMCs from normotensive Wistar-Kyoto (WKY) rats vs. PMVSMCs from spontaneously hypertensive rats (SHR), ...
متن کاملMultiple downstream proarrhythmic targets for calmodulin kinase II: moving beyond an ion channel-centric focus.
The multifunctional Ca(2+) calmodulin-dependent protein kinase II (CaMKII) has emerged as a pro-arrhythmic signaling molecule. CaMKII can participate in arrhythmia signaling by effects on ion channel proteins, intracellular Ca(2+) uptake and release, regulation of cell death, and by activation of hypertrophic signaling pathways. The pleuripotent nature of CaMKII is reminiscent of another serine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European journal of pharmacology
دوره 571 2-3 شماره
صفحات -
تاریخ انتشار 2007